

Chapter Three: Schussel and Griffin
1

Distributed and Client/Server DBMS: Underpinning for
Downsizing

© by George Schussel, 1992

3.1 Introduction to the chapter

One of the key trends in modern computing is the downsizing and distributing of applications
and data. This paradigm shift is occurring because companies want to take advantage of modern
micro-processor technology which allows them to benefit from the new styles of software which
employ graphical user interfaces (GUI). Client/server and distributed database technologies are
two fundamental enabling technologies involved in downsizing.

Client/server approaches allow the distribution of applications over multiple computers. Usually
the database(s) resides on server machines while applications run on client computers. While the
type of computer used as a server varies widely (e.g. you could have a mainframe, mini-
computer, or PC), most clients are PCs. Local area networks (LANs) provide the connection and
transport protocol used in linking clients and servers.

 A distributed database offers capabilities similar to client/server databases. The most
fundamental difference between the two architectures is that the distribution of data within a
distributed database is both pervasive and invisible. In this style, a database management system
(DBMS) resides on each node of the network, and allows transparent access to data anywhere on
the network. This means that the user is not required to physically navigate to the data.

The distributed database setup is different from the client/server approach in which the
application must be aware of the physical location of data, at least to the extent of on which
server it's located. With a distributed database, once an SQL query or remote procedure call is
directed to the appropriate server, its query optimizer for SQL will handle the internal database
navigation. Many of the advanced functions described later in this chapter such as stored
procedures, triggers, and two-phase commits, are available in both client/server and distributed
DBMS environments.

Client/server DBMS and distributed DBMS have much in common as will be discussed in this
chapter. Both are based on the SQL language, invented in the 1970s by IBM, and standardized
by ANSI and ISO as the common data access language for relational databases. Both are
appropriate for distributing applications.

Chapter Three: Schussel and Griffin
2

3.2 Introduction to Distributed Database Computing

The market for modern distributed DBMS software started in 1987 with the announcement of
INGRES-STAR, a distributed relational system from RTI (now the INGRES Division of ASK
computers) of Almaden, California. Most of the original research on distributed database
technology for relational systems took place at IBM Corporation's two principal California
software laboratories, Almaden and Santa Theresa. The first widely discussed distributed
relational experiment developed within IBM's laboratories was a project named R-Star. It is
because of IBM's early use of the word "Star" in describing this technology that most distributed
database systems have "Star" incorporated into the name. Today, the market for distributed
DBMS is almost entirely based on the SQL language and extensions. (The principal exception is
Computer Associates which inherited IDMS and DATACOM prior to relational systems, and has
implemented distributed versions both with and without SQL).

Distributed DBMS products can be thought of as occupying the Mercedes Benz echelon of the
market place. These products support a local DBMS at every node in the network along with
local data dictionary capability. This requirement that a piece of the DBMS exist on each node is
the essential difference between distributed databases and client/server systems. In a
client/server approach, the DBMS resides on one (or a few) nodes, rather than all of them, and is
accessed from a requester piece of software residing on the client.

DISTRIBUTED DATABASE vs CLIENT SERVERS

BILL OF
MATERIALS

SUPPLIER

INVENTORY

DDB NODE

ONE SOLUTION IS TO USE

A TRUE DISTRIBUTED DBMS

WITH A NODE IN THE CLIENT.

THIS NODE DOES THE JOIN

OPTIMIZATION USING THE

SYSTEM DICTIONARY.

THIS NODE CAN ALSO HANDLE

DISTRIBUTED TRANSACTIONS

AND CAN SUPPORT A GLOBAL

SCHEMA VIEW.

Chapter Three: Schussel and Griffin
3

The market for distributed DBMS has grown slowly for two reasons: 1) users aren't sure of how
to use the products, and 2) vendors are taking the better part of a decade to deliver a full range of
functionality. Another important and unanswered concern is that companies don't know what to
expect for communications costs for functions that have historically been run internal to single
computers.

Chapter Three: Schussel and Griffin
4

3.3 Introduction to Client/Server Database Computing

If distributed DBMS products represent the top tier of the market, then client/server DBMS
engines are the Fords and Chevrolets. By accepting a reduction in functionality from what a
distributed DBMS provides, vendors have developed client/server DBMS that run exceedingly
well on modern PCs and networks. It is this author's opinion that the market place for
client/server approaches is going to be far larger in dollar volume than that of distributed DBMS.

Much of the impetus for downsizing comes from the fact that many companies want to
implement applications that were previously forced to reside on mainframes, onto faster, cheaper
PCs. But, before committing to downsize such applications, assurances about the integrity of the
data and applications are necessary. In addition, PCs, as well as LANs, have had reputations for
not offering a mainframe level of security. Client/server computing is a solution that combines
the friendly interface of the PC, with the integrity, security and robustness of the mainframe.
Server databases located on PC LANs use implementations of the SQL database access language
⎯ the standard database language used on mainframes. Once you've decided to build a
client/server environment, you will be on your way to building an applications architecture that
will be economical, flexible, and portable for a long time into the future.

The functionality delivered by today's client/server systems is not too different from that of a
distributed DBMS. The key difference is that a client/server approach places the DBMS and
DBMS dictionary at certain designated nodes where the data resides. The client program is
required to navigate the system and find the correct server node for access to the necessary data.
An important advantage of the client/server approach over distributed databases is that having
only one (or a few) database locations appears to be more manageable than an architecture which
spreads data evenly across many nodes. Managing a distributed database properly would seem to
be the more difficult challenge.

3.3.1 The history behind the client/server
The idea for client/server computing grew out of database machine approaches. Sybase's Robert
Epstein was working for Britton Lee when he envisioned creating a database machine
environment with a server that was a virtual machine rather than a physically unique piece of
hardware. The systems software, then, was separated into a front-end (client) which ran the
program (written in a 4GL), and a back-end (server) which handled the DBMS chores. The
advantage of this idea was that the back-end (the virtual database machine) could physically be
moved out onto a different piece of hardware if desired. What made this different from Britton

Chapter Three: Schussel and Griffin
5

Lee's traditional approach was that Epstein planned for the server to be a generic VAX, UNIX,
or PC machine, rather than a unique, custom built database machine. By moving the database
machine onto a standard piece of hardware, Sybase picked up the advantage of a vastly improved
price performance for generic small systems.

About the same time that Epstein was starting Sybase, Umang Gupta (at that time a Senior
Oracle executive) had pictured the same situation and left Oracle to form Gupta Technologies, a
company which has emerged as a leader in PC-based, client/server DBMS and tools. Bing Yao,
the former University of Maryland professor who founded XDB Systems, was another early
developer of client/server approaches to database computing.

By now, most SQL DBMS vendors have jumped into the client/server game. One exception is
IBM; when IBM talks about client/server computing, what they are really referring to is
distributed computing. IBM is in the process of building a fully functional, distributed
architecture for all of its SQL products: DB2, SQL/DS, SQL/400, OS/2EE. IBM is taking several
years to develop this approach.

A client/server computing environment consists of three principal components: Client, server,
and network.

3.3.2 The client

CLIENT-SERVER FUNCTIONS
SQL STATEMENTS, PROCEDURE CALLS

TABLES

APPLICATION PROGRAM

SCREEN FORMS

GENERATION OF SQL

OPTIMIZE & EXECUTE SQL

MANAGE TRANSACTIONS

STORED PROCEDURES & TRIGGERS

SECURITY

CONCURRENCY MANAGEMENT

LOGGING & RECOVERY

DATABASE CREATION & DEFINITION

DATA DICTIONARY

APPLICATION CONTROL

HARDWARE/WIRE

COMMUNICATIONS SOFTWARE

MULTIPLE C & S

CLIENT

NETWORK

SERVER

BUSINESS RULE ENFORCEMENT

TASK SWITCHING

CLIENT/WINDOWS 4GLs

END
USER

PROFESSIONAL
PROGRAMMER

OCCASIONAL
PROGRAMMER

QUEST

ORACLE CARD

OBJECTVISION

OPEN INSIGHTDATAEASE

FOREST & TREES

INFOALLIANCE

SQL WINDOWS

ORACLE SQL FORMS

NOTEBOOK PARADOX

Q+E POWERBUILDER

UNIFACE

ELLIPSE

FOCUS

GUPTA TECHNOLOGIES

ORACLE

BORLAND INTERNATIONAL

LOTUS

PIONEER SOFTWARE

DATAEASE

SOFTWARE PUBLISHING CORP

CHANNEL COMPUTING

INFORMATION BUILDERS

REVELATION TECHNOLOGIES

GUPTA TECHNOLOGIES

ORACLE

BORLAND INTERNATIONAL

POWERSOFT

UNIFACE

COOPERATIVE SOLUTIONS

dBASE IV, Server Edition
BORLAND INTERNATIONAL

VISUAL BASIC
MICROSOFT

WINDOWS 4GL
ASK/INGRES

IMPROMPTU
COGNOS

Chapter Three: Schussel and Griffin
6

The client is where the application program runs. Normally, client hardware is a desktop
computer such as an IBM PC, PC clone, or Apple Mac. The application program itself may have
been written in a 4GL or third generation language such as C or COBOL. There is an entire new
class of Windows 4GLs that allows the painting of applications under leading desktop,
Windows-based, operating systems.

Such Windows 4GLs support both windows-oriented application development and execution.
Leading examples now on the market include: Powersoft's PowerBuilder, INGRES's Windows
4GL, and Gupta's SQL Windows. Using any of these application building approaches will result
in a runtime configuration where the I/O and application controls come from the client, while the
database and associated semantics run on the server. At the desktop level, most software will
support the emerging windows-based standards: Macintosh, Windows 3.x for DOS, Presentation
Manager, Open Look, and Motif for UNIX.

3.3.3 The network
The network connects the clients and server(s). Normally, networks are based on either Ethernet
or Token Ring topologies, and have appropriate interface cards in both the client and server
boxes. The communications software typically handles different types of transportation protocols
such as SPX/IPX, LU6.2, and TCP/IP. Most network environments provide support for multiple
clients and servers.

3.3.4 The server
The server is responsible for executing SQL statements received from a client. Sometimes data
requests are not communicated through SQL, but through a remote procedure call which triggers
a series of pre-compiled, existing SQL statements.

The server is responsible for SQL optimization, determining the best path to the data, and
managing transactions. Some server technologies support advanced software capabilities such as
stored procedures, event notifiers, and triggers. The server is also responsible for data security
and requester validation.

The server will also handle additional database functions such as concurrency management,
deadlock protection and resolution, logging and recovering, database creation and definition. The
idea of managing data on a separate machine fits well with the management approach of treating
data as a corporate resource. In addition to executing SQL statements, the server handles security
and provides for concurrent access to the data by multiple users.

Chapter Three: Schussel and Griffin
7

3.3.5 The benefits of using SQL
An important benefit that the set-oriented SQL language provides is network efficiency. When
using traditional, file-serving, PC LAN approaches, the entire data file must be transmitted
across a network to the client machine. Using SQL as a basis in the database management system
on the server solves this problem since only the necessary query response data (a table) is
transmitted to the client machine.

Having SQL on the server also allows the database implementation of advanced facilities such as
triggers and automatic procedures. As relational DBMS evolve, they will confer the ability to
build rules directly into the database engine. Systems that are built with this approach will be
more robust than traditional application-based logic approaches.

Although client/server computing is being planned for environments which use mini-computers
and mainframes as servers, the largest market likely to develop will have a mix of OS/2,
Macintosh, Windows 3.x, Windows NT, and MS-DOS on the client and either UNIX, Windows
NT, NetWare, or OS/2 for the server. Server software will provide mainframe levels of security,
recovery, and data integrity capability. Functions such as automatic locking and commit rollback
logic, along with deadlock detection and a full suite of data administration utilities, are available
on the server side. Another way of looking at this, then, is that SQL client-server technology
allows cheap PCs to made into "industrial strength" computing engines.

Chapter Three: Schussel and Griffin
8

3.4 More Details on Distributed DBMS

Distributed DBMS are where the most interesting action is happening in the large systems
DBMS market (mini-computer to super computer). As SQL emerges as the standard DBMS
language, the principal methods by which DBMS vendors are differentiating their products is by
adding various functions including:

• distributed or client/server computing
• support for object approaches
• addition of database semantics
• addition of more relational functionality (typically semantics)

Distributed database software needs to provide all of the functionality of multi-user mainframe
database software, while allowing the database itself to reside on a number of different,
physically connected computers. The types of functionality distributed DBMS must supply
include data integrity, maintenance through automatically locking records, and the ability to roll-
back transactions that have been only partially completed. The DBMS must attack deadlocks to
automatically recover completed transactions in the event of system failure. There should be the
capability to optimize data access for a wide variety of different application demands.
Distributed DBMS should have specialized I/O handling and space management techniques to
insure fast and stable transaction throughput. Naturally, these products must also have full
database security and administration utilities.

The discussion below first focuses on the basic, and then advanced functions for a distributed
DBMS. However, it won't be helpful to use this section as a feature checklist since there is a
great disparity between performing these functions at a minimum level and accomplishing them
at an advanced level.

3.4.1 Basic requirements for a distributed DBMS
• Location transparency Programs and queries may access a single logical view of the

database; this logical view may be physically distributed over a number of different sites
and nodes. Queries can access distributed objects for both reading and writing without
knowing the location of those objects. A change in the physical location of objects without
a change in the logical view requires no change of the application programs. There is
support for a distributed JOIN. In order to meet this requirement, it is necessary for a full
local DBMS and data dictionary to reside on each node.

Chapter Three: Schussel and Griffin
9

• Performance transparency It is essential to have a software optimizer create the

navigation for the satisfaction of queries. This software optimizer should determine the best
path to the data. Performance of the software optimizer should not depend upon the original
source of the query. In other words, because the query originates from point A, it should not
cost more to run than the same query originating from point B. This type of technology is
rather primitive at this time and will be discussed later in this chapter.

• Copy transparency The DBMS should optionally support the capability of having multiple

physical copies of the same logical data. Advantages of this functionality include superior
performance from local, rather than remote, access to data, and non-stop operation in the
event of a crash at one site. If a site is down, the software must be smart enough to re-route
a query to another data source. The system should support fail over reconstruction: when
the down site becomes live again, the software must automatically reconstruct and update
the data at that site.

• Transaction transparency The system needs to supports transactions that update data at

multiple sites. Those transactions behave exactly the same as others that are local. This

DISTRIBUTED DBMS - REQUIREMENTS
1) LOCATION TRANSPARENCY

2) PERFORMANCE TRANSPARENCY

3) COPY TRANSPARENCY

4) TRANSACTION TRANSPARENCY

5) FRAGMENT TRANSPARENCY

6) SCHEMA CHANGE TRANSPARENCY

7) LOCAL DBMS TRANSPARENCY

QUERIES CAN ACCESS DISTRIBUTED OBJECTS (DISTRIBUTED JOIN) FOR BOTH READ & WRITE
- WITHOUT KNOWING THE LOCATION OF THOSE OBJECTS. THERE IS FULL LOCAL DBMS & DD.

A QUERY OPTIMIZER MUST DETERMINE THE BEST (HEURISTIC) PATH TO THE DATA
PERFORMANCE MUST BE THE SAME REGARDLESS OF THE SOURCE NODE LOCATION.

MULTIPLE COPIES OF DATA MAY OPTIONALLY EXIST. IF A SITE IS DOWN, THE QUERY IS
AUTOMATICALLY ROUTED TO ANOTHER SOURCE. FAILOVER RECONSTRUCTION IS SUPPORTED

TRANSACTIONS THAT UPDATE DATA AT MULTIPLE SITES BEHAVE EXACTLY AS OTHERS THAT
ARE LOCAL. THEY COMMIT OR ABORT. THIS REQUIRES A 2-PHASE COMMIT PROTOCOL.

THE DDBMS ALLOWS A USER TO CUT A RELATION INTO PIECES, HORIZONTALLY OR
VERTICALLY, AND PLACE THEM AT MULTIPLE SITES.

CHANGES TO DATABASE OBJECT DESIGN NEED ONLY TO BE MADE ONCE INTO THE
DISTRIBUTED DATA DICTIONARY. THE DBMS POPULATES OTHER CATALOGS AUTOMATICALLY.

THE DDBMS SERVICES ARE PROVIDED REGARDLESS OF THE LOCAL DBMS BRAND. THIS MEANS
THAT RDA AND GATEWAYS INTO HETEROGENEOUS DBMS PRODUCTS ARE NECESSARY.

Chapter Three: Schussel and Griffin
10

means that transactions will either all commit or abort. In order to have distributed commit
capabilities, a technical protocol known as a two-phase commit is required.

• Fragmentation transparency The distributed DBMS allows a user to cut relations into

pieces horizontally or vertically, and place those pieces at multiple physical sites. The
software has a capability to recombine those tables into units when necessary to answer
queries.

• Schema change transparency Changes to database object design need only be made once

into the distributed data dictionary. The dictionary and DBMS automatically populate other
physical catalogs.

• Local DBMS transparency The distributed DBMS services are provided regardless of

brand of the local DBMS. This means that support for remote data access and gateways into
heterogeneous DBMS products are necessary.

3.4.2 IBM's four ways to distribute data
Most vendors have been taking
many years to develop software
that offers distributed DBMS
capability. As a way of bringing
its distributed SQL products to
market, IBM has proposed a
phased implementation with four
discrete steps to achieve
distribution of data. These four
principal steps are defined as
follows:

• Extracts provide the ability

to extract data. This simply
means that there exists a
batch process which
unloads and reformats operational data into a relational view. For example, IBM's DXT
allows for batch unloading of IMS, and reformatting into DB2. This extraction is manually
managed.

PHASE 1 - REMOTE REQUEST

PHASE 2 - REMOTE UNIT OF WORK

PHASE 3 - DISTRIBUTED UNIT OF WORK

PHASE 4 - DISTRIBUTED REQUEST

APPLICATION REMOTE db

APPLICATION

APPLICATION

APPLICATION

REMOTE db1

REMOTE db2

REMOTE db1

REMOTE db2

REMOTE db1

REMOTE db2

REMOTE db3

UNIT 1

UNIT 1

UNIT 1

SQL 2

SQL 1

SQL 1

SQL 2

UNIT 2

* Add Commit at unit

* Read only/CICS, DC

NOW

NOW

1992/3

1994

* No unit of work

* No commit

* Single remote SQL request

* Read only replicates

* Has two phase commit

* Multi-site update

* Multi-site JOIN, UNION

* Full replicates

* Distrib. Catalog

IBM's APPROACH TO DISTRIBUTED DATABASE

Chapter Three: Schussel and Griffin
11

• Snapshots are becoming a popular technique among many vendors. A snapshot is an

extract (as defined above), along with a date and time stamp. The advantage of a snapshot
is that after it's defined to the system, it is automatically created and managed. Snapshots
are read-only and provide an alternative method for decision support access to production
data.

• Distributed tables can be thought of as the first level of real-time, read/write, distributed

DBMS functionality that meets the fragmentation requirement previously mentioned. Such
a system, which can support distributed tables, will normally manage a single physical copy
of data to support the system's logical views.

• Replicates are a more sophisticated version of the distributed DBMS capabilities classified

under copy transparency. This can be thought of as support for a single logical view by up
to "n" physical copies (of the same data). These data replicates must be updatable (not
snapshots). At a minimum, updatability of physical data replicates will require a software
optimizer (as discussed below) and a two-phase update commit protocol.

3.4.3 Software Optimizers
When a DBMS is spread over many different physical sites, the cost difference between the best
and worst ways of accomplishing a function such as a JOIN can easily be a million to one.
Because of this, a distributed DBMS absolutely must have a cost-based software optimizer.
Without a cost-based optimizer, navigation to data is under programmer control, violating a
basic precept of relational theory (this is what must be done with several earlier RDBMSs such
as Oracle prior to 7.0). Without such an optimizer, only known queries can be handled, since the
performance of an unanticipated query may be extremely poor.

A reasonable software optimizer has to be intelligent enough to ask tough questions, and to
develop a correct search strategy based upon the answers to those questions. Examples of the
types of issues that should be dealt with are:

1. How busy are the various machines on the network?
2. What are relative speeds of these machines?
3. What are sizes of the tables that have to be accessed?
4. How are the tables organized?
5. What is the line speed between various nodes on the network?

Chapter Three: Schussel and Griffin
12

6. How busy are the lines between the various nodes?
7. What are the access patterns in indexes?
8. Where should software optimizer itself run?

3.4.4 Two-phase commit protocol
The goal of the two-phase commit protocol is to allow multiple nodes to be updated
synchronously as result of a group of SQL statements which are either committed or rejected
together.

The general procedure for a two-phase commit is as follows:
1. One node is designated as a master; the master sends notice of an upcoming query out to all

of the slaves.
2. The slaves respond with ready messages when all of the data necessary for the protocol is

available.
3. The master sends out a "prepare" message to the slaves.
4. The slaves lock the necessary data and respond with a "prepared" message to the master.
5. The master sends a "commit" message to the slaves.
6. The slaves respond with a "done" message.

For the DBMS software vendor, developing a two-phase protocol is one of the most challenging
tasks. The additional complexity in this type of software comes from the fact that there are
different types of failure nodes,
and the software needs to
recover from any combination of
failures over all of the supported
environments. For the user,
operation in an environment
requiring a two-phase commit
may be very costly. The extra
cost is incurred since a two-
phase commit requires an extra
round-trip message above the
normal amount of messages that
occur in single computer
systems.

Synchronized Updates

Application 1

Application 2

read
modify
restore

read
modify
restore

read
modify
restore

update update

update

update

Now the source disagrees

Possible solutions involve:
> Master control program to coordinate updates
> 2-phase commit - records are acted upon as if they had been stored

in database, but don' t get stored until SYNCH point.
> Only synchronize on batch (eg daily) basis. Control with rules.

Chapter Three: Schussel and Griffin
13

There are no standards for implementing a two-phase commit. Various vendors have offered
different, partial implementations. It is likely that we will see a future ISO standard dealing with
two-phase commit protocol.

3.4.5 More advanced capabilities for distributed (or client/server) DBMS

• Gateways Many of the distributed database and client/server DBMS products have optional
gateways that allow access to data stored in other DBMS. Lower levels of functionality
provide for read-only access, while higher levels of function allow write access also. This
higher level should be accompanied by a two-phase commit capability across the different
systems (general availability of this capability is still in the future.)

Distributed access is a technology that is closely related to distributed DBMS. Distributed
access is about the building of gateways that allow one DBMS to access data stored in
another. This can properly be thought of as a subset of the technologies being delivered by
vendors selling distributed DBMS or client/server DBMS technologies. The demand for
distributed access, of course, is greatest in popular mainframe file and database environments
such as IBM's IMS, DB2, VSAM, and DEC's Rdb. This is because local DBMS capability is
not a requirement for distributed access. Instead, most vendors provide a piece of software
known as a requester to be run on the client side of the RDA environment. Some of the
products in this market are not finished gateways, but tool kits so that users can build custom
gateways.

• Relational Integrity An important server function that supports increased productivity in

application development is relational integrity. This can include features such as referential
integrity, or the ability to state business rules directly into the database using stored
procedures or program triggers.

• Triggers Triggers are small SQL programs, written in SQL extended language, that are

stored in the DBMS catalog. Each trigger is associated with a particular table and an SQL
update function (e.g., update, delete, and insert). They are automatically executed whenever a
transaction updates the table. You can write triggers to enforce any database validation rule,
including referential integrity.

Since triggers are stored in the catalog and automatically executed, they promote consistent
integrity constraints across all transactions. Triggers are easy to maintain because they are

Chapter Three: Schussel and Griffin
14

stored in only one place. They result in rules that are enforced for any application that
accesses the database, such as spreadsheet programs.

• Multi-Threaded Architecture For the best performance, distributed (or client/server) DBMS

should implement a multi-threaded, single-server architecture. Multi-threaded servers
perform most of their work and scheduling without interacting with the operating system.
Instead of creating user processes, multi-threaded servers create a thread for each new user.
Threads are more efficient than processes ⎯ they use less memory and CPU resources. A
multi-threaded server DBMS can service 10 to 40 users simultaneously on a machine as
small as a 33 MHz 80386 PC with 10 MB of RAM.

• Symmetric Multi-processing Another advantage of DBMS servers is direct support of multi-

processor hardware architectures in a symmetric multi-processing (SMP) mode. Most
operating systems either currently (UNIX, Windows NT, VMS) or soon will (OS/2) offer
support for this functionality. Therefore, there needs to be effective integration between the
DBMS and operating system to take advantage of the potentially improved throughput.

Direct support for SMP means the DBMS can take advantage of several parallel processors
under the same skin (with an appropriate operating system). These processors can be either
tightly or loosely coupled. As of mid-1992, Borland's Interbase can take advantage of VAX
Clusters, which neither Sybase or Oracle can use to full advantage.

• Cursors A cursor stores the results of a SQL query and allows a program to move forward

through the data one record at a time. Sometimes, programmers are also able to move
backward within a cursor. Without a cursor, it's harder to program transactions to browse
through data.

• Text, Image, Date, and other extended data types Support for different types of data can

make any DBMS useful in a wider variety of applications. To store a picture, it would be
useful to have something like IMAGE data types of binary data. Another useful item is
TEXT data types which are printable character strings.

• Remote procedure calls (RPC) RPCs allow an application on one server (or client) to

execute a stored procedure on another server. Stored procedures enhance computing
performance since all of the commands can be executed with one call from the application
program.

Chapter Three: Schussel and Griffin
15

• Multi-platform implementations Another primary advantage of a robust DBMS is multi-

platform portability and networking. If your software runs on many different vendor's
hardware, then you have that much more flexibility. For example, Oracle was built with an
approach that has outdone all other DBMS products as far as hardware variety supported.

• Disk Mirroring For companies wanting the reliability of mainframe environments on the PC

LAN, a disk, or server, mirroring capability is necessary. Mirroring implies that dual
operations are executed for each computing step, with error reports whenever there is any
difference between the results of the dual steps. Mirroring also allows the system to continue
to operate at essentially full speed even after one of the processors or disks has failed. Disk
mirroring is supported through the process called "shadowing." This is a very useful facility
for applications that require extremely low amounts of down-time - if one disk fails, then the
system will automatically divert and use the other disk without interrupting operations.

• BLOB data types A BLOB data type (binary large object bin) has no size limit and can

include unstructured non-relational types of data such as text, images, graphics, and digitized
voice. One way to handle BLOBs is as a single field in a record, like a name, date, or floating
point number. It can then be governed by concurrency and transaction control.

The ability to create "database macros" which can be executed by the database engine should
be supported within the DBMS. These macros would be implemented as centrally-stored,
user-written procedures that tell the database system how to translate BLOB data to another
format. Because they are stored in one place and managed by the database, BLOB macros are
simpler to create and maintain than similar code in an application.

• Application Specific Functions This capability allows a user to easily extend the range of
database commands by adding new functions, coded in C, to the DBMS kernel. This facility
is helpful in the manipulation of BLOB data.

• Event Alerters An event alerter is a signal sent by the database to waiting programs that

indicates that a database change has been committed. Event alerters work remotely and can
span across multi-vendor networks. Although it would seem to be simple to add event
alerters to a system that supported the concept of triggers, implementation of the technology
is made difficult by the need to support an asynchronous, heterogeneous environment.

Chapter Three: Schussel and Griffin
16

Event alerters offer the following benefits:
• The waiting programs consumes neither network traffic nor CPU cycles.
• Notification is effectively instantaneous, not dependent on some polling interval.
• Event notification works remotely, even across differing platforms. The notification

mechanism is managed by the DBMS.
• Unlike a trigger, an event alerter can affect programs running outside of the database.

• Multi-dimensional Arrays In scientific processing or time-series commercial types of

applications, array support for the database is useful. Arrays are stored as a single field in a
record so that retrieval is expedited. Arrays are widely used in scientific processing and are
very expensive to normalize for a relational DBMS ⎯ normalization typically means
creating redundant data to generate separate records for information that is really only
different at the field level.

Chapter Three: Schussel and Griffin
17

3.5 More on Client/Servers

Almost all of the advanced functions listed in the previous section on distributed DBMS (such as
BLOB data types, RPCs, and event alerters) are also available from leading DBMS server
vendors. To repeat our previous definition, the primary difference between a server DBMS and a
distributed DBMS is whether or not each node on the network has a full copy of the DBMS.
Added functionalities aren't a good way to tell the difference between these two cousin
technologies.

Many companies are delivering client/server DBMS and associated tools at this time. The very
large and active market of the 1970s and 1980s for mainframe DBMS and 4GLs that featured
companies like Cullinet, IBM, Software AG, Cincom, and Applied Data Research, has been
replaced by a new market. This new environment is built around the client/server model with
open availability (connectivity) between tools and DBMS. The domination of this new
marketplace is being battled for between companies including Microsoft, Revelation
Technologies, Borland, Sybase, Oracle, and Powersoft. The reasons behind the current and
impending growth of this market are many:

• The architecture is simpler (from a software developer's point of view) than is distributed

DBMS, and therefore more important (matter of opinion here) as the capabilities can be
brought to market sooner and at a lower price.

• Developers can use PCs instead of time-sharing terminals as primary development platforms.
• Even though the PC is used as the principle platform, security, integrity, and recovery

capabilities comparable to mini-computers are the result.
• The efficiency of SQL queries and transmissions greatly reduces the network communication

load (from that of a PC LAN/file-server-based approach).
• Gateway technologies, which are an important component of client-server computing, will

allow PC users to gain access to data located in mainframe and mini-computer DBMS
products such as DB2, IMS, and Rdb.

• The client/server model isolates the data from the applications program in the design stage.
This allows a greater amount of flexibility in managing and expanding the database and in
adding new programs at the application level.

• The client/server model is very scalable because as requirements for more processing come
up, more servers can be added to the network, or servers can be traded up for the latest
generation of micro-processors.

Chapter Three: Schussel and Griffin
18

• A lot of flexibility comes from a computing environment based upon SQL since the language
is a standard. Commitment to an SQL server engine will mean that most front-end, 4GL,
spreadsheet, word-processing, and graphics tools will be able to interface to an SQL engine.

• Client/server computing provides the industrial strength security, integrity, and database
capabilities of mini-computer or mainframe architectures, while allowing companies to build
and run their applications on relatively inexpensive PC and mini-computer networks. The use
of this hardware and software combination can cut 90% of hardware and software costs when
building "industrial strength" applications.

The client/server model offers users choices between many different hardware and software
platforms. The hardware choices are too expansive to be listed here, but the principal choices for
operating systems are multi-user, multi-tasking, protected products such as UNIX, OS/2,
Windows NT, and NetWare. The micro-processor engine driving the hardware is typically a
single or dual processor Intel x86, or RISC chips such as SPARC or the MIPS R4000.

The client environment is typically a smaller, but powerful PC, that has enough power to run
applications on top of multi-tasking, single-user operating systems such as Windows 3.1 or
OS/2.

The concept of using a large
mainframe such as a VAX 9000 or
ES/9000 as a database server to
networks is discussed by the
mainframe vendors. For these
machines to play a role in future
networks, however, it is clear that
they will have to adopt server
functionality by acquiring and
supporting emerging downsizing
standards such as UNIX, NetWare,
LAN Manager for Window's NT,
and LAN Server for OS/2.

3.5.1 Performance from a client/server environment

PLAYERS IN THE SERVER MARKET
GUPTA TECHNOLOGIES, INC.
IBM
INFORMIX SOFTWARE INC.
ASK/ INGRES DIVISION
MICROSOFT/ SYBASE
NOVELL
ORACLE
SYBASE
XDB SYSTEMS INC.
BORLAND/ INTERBASE
PROGRESS SOFTWARE
COMPUTER ASSOCIATES
DEC

SQLBase
OS/ 2EE
INFORMIX ONLINE
INTELLIGENT DATABASE
SQL SERVER
NETWARE SQL
ORACLE SERVER
SQL SERVER
XDB-SERVER
INTERBASE
PROGRESS
IDMS/ R, DATACOM
Rdb, ACMS

Chapter Three: Schussel and Griffin
19

The reader might be skeptical of the claim that PCs running server software can perform as well
as mainframes, but there is documented evidence to this effect. The most efficient PC server
operating system at this time is probably NetWare. Tests run in abidance of the Transaction
Processing Council's standards have shown that products like ORACLE and Gupta's SQLBase
are capable of running about 50 transactions per second (TPS) on 486-based PCs. This number
would not be an unreasonable result for a mainframe running IBM's DB2.

The transaction capabilities of client/server software working with low-end PC servers or
super-servers (mini-computer style cabinets built with merchant micro-processors such as the
80486 or R4000) is quite astounding. For example, at the low-end of the hardware scale, both
Gupta's SQLBase and Microsoft's SQL Server can run on Intel 80486-based PCs processing
approximately 18 TPC-B TPS (Transaction Processing Council, database Benchmark B). PC
hardware can support disks with 12-milli-second access time and 4 MB to 6 MB transfer rates.
Such a machine can be configured with 600 MB of disk for under $10,000. In case you're not
familiar with the TPC-B benchmark, it should be pointed out that a rate of 18 TPS would be
adequate to support 400 automated teller machines on a single server.

If you have had a chance to build PC-based database applications in the last few years, you may
be suspicious of any claim that a PC hardware environment could be capable of performing on a
level comparable with mini-computer technology. However, it is important to remember that the
processing capability of a typical PC has increased by a factor of twenty between 1984 and 1992.
A PC built around the Intel 80486
micro-processor chip running at 33
MHz has forty times the computing
power of a PC/XT.

This high level of service can provide
on-line transaction processing
capabilities at a cost of $2,000 per
TPS. This cost is much less per TPS
than existing mini-computer and
mainframe systems can provide.
Using proprietary mini-computers,
you can expect to spend between
$25,000 and $40,000 per TPS. IMS-
based MVS mainframe environments

DATABASE SERVER PERFORMANCE

LOW END

HIGH END

486 PCs, LOW END RISC, 12 ms ACCESS/4MB TRANSER RATE
10 - 20 MIPS @ $6,000 TO $18,000
8 - 15 TPC-B/SEC
90 WORKSTATIONS SIMULTANEOUSLY A SINGLE SERVER

SCSI AND IPI CHANNELS - COMPARABLE TO 3090 CHANNELS
PARALLEL CISC OR RISC GIVES 100's OF MIPS

250 ATM's ON A SINGLE SERVER

* OLTP AT $1K - $4K/TPS
RESULT:

ETHERNET - 100 TPS ACROSS NETWORK

Chapter Three: Schussel and Griffin
20

typically yield a cost of $50,000-75,000 per TPS. Alternatively, using the combination of MVS
and DB2 as a transaction processing engine will typically cost over $100,000 per TPS. What all
of this means is that, based upon full development, maintenance, hardware, software, and staff
costs, SQL client-server computing is likely to result in finished systems that cost only a small
fraction of what building transaction systems has cost in the past. Actual case studies confirm
this type of important savings in finished, delivered systems.

Of course, there are many applications which are simply too large to contemplate running on
(even a fast) PC. Client/server architectures allow you to design the application once and then,
without change, port that application to whichever server has the database processing power you
need to manage your database. This allows application development on PC-style servers, with
the porting to the new generation of "super servers", mini-computers built to run open operating
systems powered by multi-processing versions of merchant CPU chips. The approach is to take
micro-processor-based technologies and combine them with high speed buses, channels, and
parallel computing architectures to create platforms that can run with the fastest mini-computers.
Vendors such as Compaq, Pyramid, and Sequent are building parallel processing machines using
CICS or RISC micro-processor units capable of reaching a sustained processing capability of
100s of MIPS. Do not be surprised, then, to see a combination of these new hardware systems
with software from companies like Sybase, Gupta, Novell, Microsoft, and Oracle delivering
computing technologies comparable to IBM's largest machines, but at a tiny fraction of the price.

As a first project, it is clearly better to use client/server computing for mostly-read or decision
support environments. The very large, tough performance-based applications, such as retail
credit card verification or airline reservations, require reliable processing of hundreds of
transactions/second and are still relegated to mainframes only.

In the future, I expect multi-processor-based client/server architectures to take on mainframe
types of applications. It is very reasonable to envision products like Oracle and Sybase in
combination with high-end super servers from companies such as Solbourne, Pyramid,
Concurrent, Compaq, IBM, or DEC. This high-end super server hardware is typically built with
parallel Intel 386, 486, and/or RISC chips from MIPS or Sun. By configuring a server with a
multi-processor design and an open operating system which supports it (e.g. UNIX, VINES, NT,
OS/2, or Lan Manager), a vendor can build a machine with hundreds of MIPS processing power
and 250 GB of disk data storage for well under $500,000. Combining this technology with high
speed channels and a client/server DBMS, allows a configuration of new technology hardware
and database server to be considered as a replacement for a $14 million IBM System 390

Chapter Three: Schussel and Griffin
21

running DB2. With a potential savings of almost 95%, this would appear to be an offer well
worth considering for many situations.

Chapter Three: Schussel and Griffin
22

3.6 Conclusion - A Reality Check

The various advantages of distributed processing and distributed DBMS are both well
documented and considerable, especially for companies that wish to take advantage of new
computing styles featuring graphical interfaces and distributed implementation. Migrating to
these new technologies, however, requires serious investments in the training and building of
expertise for the new systems. There do exist potential problems associated with taking
advantage of the advanced capabilities of distributed databases. Below is a quick summary of
some of the problems associated with this technology.

1. Communication costs can be quite high and using a two-phase commit protocol tends to

generate a considerable amount of communications traffic.
2. There is the need for gateway technology to handle the SQL differences among different

DBMS vendors.
3. The predictability of total costs for distributed queries is variable. In other words, it is

difficult to predict how much it will cost to get a job done.
4. Supporting concurrency, in addition to deadlock protection, is very difficult.
5. Supporting full recovery with fail over reconstruction is very expensive.
6. Performing a JOIN across different physical nodes is very expensive using today's

technology and networks.
7. Some advanced relational functions, reasonable for single computers, are difficult and

expensive across distributed networks (e.g. the enforcing of semantic integrity restraints).
8. The job of the database administrator is more difficult because, above and beyond their

current functions, they need to understand the integrity, optimizer, communication, and data
owner issues of the distributed world.

9. Data security issues are neither well understood nor proven. It would appear that a
distributed environment is more susceptible to security breaks than is a database which is
contained in one box.

Please recognize this as a list of potential pitfalls that await (in most cases) the advanced user of
this new technology. As in the case of most new technologies, the well-advised user would take
small steps while the approach is mastered, before moving onto the more complex
conversions/implementations. Many companies will find the client/server approach to be simpler
to implement initially. Investments made in such an approach will likely migrate towards a
distributed database if later desired.

Chapter Three: Schussel and Griffin
23

At a rate of 50 TPC-B transactions/second, a (currently) large PC is capable of running a SQL
DBMS and delivering services comparable to most of the IMS applications in existence today.
The ability to create those applications with the ease associated with SQL databases and GUI
screen painters is something that we only could have dreamed about in the mid-1980s.
Prototyping approaches in building those applications means that significant time-savings will be
realized in better looking and more flexible 1990s approaches. The era of PC LAN-based
systems has arrived, and will dominate the systems building paradigm for the foreseeable future.

QUESTIONS:

Students
1. What is the fundamental difference between a distributed database and a client/server

design?
2. Is the criticism that downsized, PC-based database architectures aren't as robust and secure

as mainframe environments valid?
3. In a client/server environment, which computing functions are located on the client(s) and

which can be found on the server(s), and what are the types of hardware used for each of
these machines?

Academic
1. Do you believe that there will be a role for mainframes in downsized computing

environments?

Practitioners
1. Why, at this point in time, are more companies choosing to implement client/servers

architectures rather than distributed databases?
2. Given that downsizing is a fundamental paradigm shift in the computing industry, what are

the effects going to be on both the PC and mainframe markets?

